CHAPTER TWO

@)

Knots and
Borromean Rings

THREE CURIOUSLY INTERLOCKED RINGS, familiar to many peo-
ple in this country as the trade-mark of a popular brand of
beer, are shown in Figure 5. Because they appear in the coat
of arms of the famous Italian Renaissance family of Borro-
meo they are sometimes called Borromean rings. Although
the three rings cannot be separated, no two of them are
linked. It is easy to see that if any one ring is taken from the
set, the remaining two are not linked.

In a chapter on paper models of topological surfaces, which
appears in the first Scientific American Book of Mathemati-
cal Puzzles & Diversions, I mentioned that I knew of no paper
model of a single surface, free of self-intersection, that has
three edges linked in the manner of the Borromean rings.
“Perhaps,” I wrote, “a clever reader can succeed in construc-
ting one.”

This challenge was first met in the fall of 1959 by David A.
Huffman, associate professor of electrical engineering at the
Massachusetts Institute of Technology. Huffman not only
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succeeded in making models of several different types of
surface with Borromean edges; in doing so he also hit upon
some beautifully simple methods by which one can construct

Figure 5
The three Borromean rings

paper models of a surface with edges that correspond to any
type of knot or set of knots—interlaced, interwoven or linked
in any manner whatever. Later he discovered that essentially
the same methods have been known to topologists since the
early 1930’s, but because they had been described only in
German publications they had escaped the attention of every-
one except the specialists.

Before applying one of these methods to the Borromean
rings, let us see how the method works with a less complex
structure. The simplest closed curve in space is, of course, a
curve that is not knotted. Mathematicians sometimes call it a
knot with zero crossings, just as they sometimes call a
straight line a curve with zero curvature. Diagram 1 in Fig-
ure 6 is such a curve. The shaded area in the diagram repre-
sents a two-sided surface whose edge corresponds to the
curve. It is easy to cut the surface out of a sheet of paper. The
actual shape of the cutout does not matter, because we are
interested only in the fact that its edge is a simple closed
curve. But there is another way to color the diagram. We can
color the outside of the curve (diagram 2 in Figure 6) and
imagine that the diagram is on the surface of a sphere. Here
the closed curve surrounds a hole in the sphere. The two mod-
els—the first cutout and the sphere with the hole—are topo-
logically equivalent. When put together edge to edge, they
form the closed, two-sided surface of a sphere.

Now let us try the same method on a slightly more compli-
cated diagram (diagram 3) of the same space curve. Think of
this curve as a piece of rope. At the crossing we indicate that



Figure 6
Models of surfaces with an unknotted edge

one segment of rope passes under the other, like a highway
underpass, by breaking the line as shown. This curve also is
a knot of zero crossings, because it can be manipulated so that
the crossing is eliminated. (The order of a knot is the mini-
mum number of crossings to which the knot can be reduced
by deformation.) As before, we shade the diagram with two
colors, tinting it so that no two regions with a common bound-
ary have the same color. This can always be done in two dif-
ferent ways, one a reverse print of the other.

If we color diagram 3 as shown in the illustration, the mod-
el is merely a sheet of paper with a half twist. It is two-sided
and topologically equivalent to each of the previous models.
But when we color the diagram in the alternate way (diagram
4), regarding the white spaces as holes in a sphere, we obtain
a surface that is a Mobius strip. It too has an edge that is a
knot of zero crossings (that is, not a knot), but now the sur-
face is one-sided and topologically distinct from the preceding
model. The closed, no-edged surface that results when the two
models are fitted together is a cross cap, or projective plane:
a one-sided surface that cannot be constructed without self-
intersection.

The same general procedure can be applied to the diagram
of any knot or group of knots, linked together in any manner.
Let us see how it applies to the Borromean rings. The first
step is to map the rings as a system of underpasses, making
sure that no more than two roads cross at each pass. Next,
we color the map in the two ways possible (diagrams 1 and 2
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in Figure 7). Each crossing represents a spot where the paper
surface (the shaded areas) is given a half twist in the direc-
tion indicated. The one-sided surface shown in diagram 1 is
easily made with paper, either in the elegant symmetrical
form shown or in topologically equivalent forms such as the
one depicted in diagram 3. The model that results from dia-
gram 2, with the Borromean rings outlining the holes in a
sphere, seems at first glance quite different from the preced-
ing model. Actually it is topologically the same. Sometimes
the two methods of coloring lead to equivalent models, some-
times not.

Figure 7
Topologically equivalent one-sided surfaces with Borromean-ring edges

It can be proved that this double procedure can be applied
to any desired knot or group of knots, of any order, linked
together in any manner. Most models obtained in this way,
however, turn out to be one-sided. Sometimes it is possible
to rearrange the crossings of the diagram so as to yield a
two-sided surface, but usually it is extremely difficult to see
how to make this sort of modification. The following method,
also rediscovered by Huffman, guarantees a two-sided model.

To illustrate the procedure, let us apply it to the Borro-
mean rings. First draw the diagram, but with light pencil
lines. Place the point of the pencil on any one of the curves
and trace it around, in either direction, back to the starting
point. At each crossing make a small arrow to indicate the
direction in which you are traveling. Do the same with each
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of the other two curves. The result is diagram 1 in Figure 8.

Now go over this diagram with a heavier pencil or crayon,
starting at any point and moving in the direction of the
arrows for that curve. Each time you come to a crossing turn
either right or left as indicated by the arrows on the intersect-
ing strand. Continue along the other strand until you reach
another crossing, then turn again, and so on. It is as if you
were driving on a highway and each time you reached an
underpass or overpass you leaped to the other road and con-
tinued in the direction its traffic was moving. You are sure to
return to your starting point after tracing out a simple closed
curve. Now place the crayon at any other point on the dia-
gram and repeat the procedure. Continue until you have gone
over the entire diagram. Interestingly enough, the closed
paths produced in this way will never intersect one another.
In this case the result will look like diagram 2 in Figure 8.

Each closed curve represents an area of paper. Where two
areas are alongside each other, the touching points represent
half twists (in the direction indicated on the original dia-
gram) that join the areas. Where one area is inside another,
the smaller area is regarded as being above the larger, like
two floor levels in a parking garage. The touching points rep-
resent half twists, but now the twists must be thought of as
twisted ramps that join the two levels. The finished model is
shown at 3 in Figure 8; it is two-sided and its three edges
are Borromean. It can be proved that any model constructed
by this procedure will be two-sided. This means that it can

Figure 8
Steps in making a two-sided surface with Borromean-ring edges
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Figure 9
A two-sided, Borromean-ring-edged surface

be painted in two contrasting colors, or constructed from
paper that is differently colored on its two sides, without hav-
ing one color run into the other. Figure 9, supplied by Huff-
man, shows a pleasingly symmetrical way of diagraming such
a surface.

The reader may enjoy building models of other knots and
linkages. The figure-of-eight knot, for example, leads to very
pleasing, symmetrical surfaces. The first diagram in Figure
10 is one way in which this familiar knot can be mapped. Dia-
grams of this sort, by the way, are used in knot theory for
determining the algebraic expression for a given knot. Equiv-
alent knots, in the sense that one can be deformed into the
other, have the same algebraic formula, but not all knots with
the same formula are equivalent. It is always assumed, of
course, that the knots are tied in closed curves in three-dimen-
sional space. Knots in ropes open at the ends, or in closed
curves in four-dimensional space, can all be untied and are
therefore equivalent to no knots at all.

The figure-of-eight knot is the only knot that reduces to a
minimum of four crossings, just as the overhand or trefoil
knot is the only type that has a minimum of three crossings.
Unlike the trefoil, however, the figure-of-eight knot has no
mirror image, or rather it can be deformed into its mirror
image. Such knots are called “amphicheiral,” meaning that
they “fit either hand,” like a rubber glove that can be turned
inside out.

No knots are possible with one or two crossings. There are
two five-crossers, five six-crossers, eight seven-crossers (see
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Figure 10). This tabulation does not include mirror-image
knots but does include knots that can be deformed into two
simpler knots side by side. Thus the square knot (knot 7 in
the illustration) is the “product” of a trefoil and its mirror
image; the granny (knot 8) is the “product” of two trefoils
of the same handedness. Knots 3 and 16 have very simple
models. You have only to give a strip five half twists and join
the ends to make its edge form knot 3, seven half twists to
make it form knot 16.

All sixteen of these knots can be diagramed so that their
crossings are alternately over and under. (Only knot 7, the
square knot, is shown in nonalternating form.) Not until the
number of crossings reach eight is it possible to construct
knots (there are three) that cannot be diagramed in alter-
nating form.

Figure 10

Knots of four crossings (1), five crossings (2, 3), six crossings (4-8) and
seven (9-16)
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The reader may wonder why knot 9, a combination of a
trefoil and a figure-of-eight, does not have two distinet forms
like the square knot and granny, knots 7 and 8, each of which
combines two trefoils. The answer is that the figure-of-eight
part of knot 9 can be transformed to its mirror image without
altering the handedness of the trefoil part, therefore there
is only the knot shown and its mirror image.

A knot that cannot be deformed into simpler knots side by
side is called a prime knot. All the knots in the illustration
are prime except 7, 8 and 9. Knots have been carefully tabu-
lated up through ten crossings, but no formula has yet
emerged by which the number of different knots, given n
crossings, can be determined. The number of prime knots
with ten crossings is thought to be 167. Only wild guesses
can be made as to the number of prime knots with eleven and
twelve crossings.

Like topology, to which it obviously is closely related, the
theory of knots is riddled with unsolved, knotty problems.
There is no general method known for deciding whether or
not any two given knots are equivalent, or whether they are
interlocked, or even for telling whether a tangled space curve
is knotted or not. To illustrate the latter difficulty, I have con-
cocted the puzzle depicted in Figure 11. This strange-looking
surface is one-sided and one-edged, like a Mobius strip, but
is the edge knotted ? If so, what kind of knot is it? The reader
is invited to study the picture, make a guess, then test his
guess by the following empirical method. Construct the sur-
face with paper and cut it along the broken line. This will
produce one single strip that will be tied in the same type of
knot as the edge of the original surface. By manipulating the
strip carefully so as not to tear the paper you can reduce it
to its simplest form and see if your guess is verified. The re-
sult may surprise you.

In the 1860’s the British physicist William Thomson (later
Lord Kelvin) developed a theory in which atoms are vortex
rings in an incompressible, frictionless, all-pervading ether.
J. J. Thomson, another British physicist, later suggested that
molecules might be the result of various knots and linkages
of Lord Kelvin’s vortex rings. This led to a flurry of interest
in topology on the part of physicists (notably the Scottish
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Figure 11
A one-sided, one-edged surface. Is the edge knotted?

physicist Peter Guthrie Tait), but when the vortex theory
was discarded, the interest wauned. Perhaps it will revive now
that chemists at the Bell Telephone Laboratories have pro-
duced radically new compounds, called catenanes, that con-
sist of carbon molecules in the form of rings that are actually
linked. It is now theoretically possible to synthesize com-
pounds made up of closed chains that can be knotted and in-
terlocked in bizarre ways. (See Edel Wasserman, ‘“Chemical
Topology,” Scientific American, November 1962, pages 94—
102.) Who can guess what outlandish properties a carbon
compound might have if all its molecules were, say, figure-of-
eight knots? Or if its molecules were joined into triplets, each
triplet interlocked like a set of Borromean rings?

One might suppose that living organisms would be free of
knots, but such is not the case. Thomas D. Brock, a micro-
biologist at Indiana University, reported in Science, Vol. 144,
No. 1620 (May 15, 1964), pages 870-72, on his discovery of
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a stringlike microbe that reproduces by tying itself in a knot
(the knot can be an overhand, figure-of-eight, granny, or
some other simple knot) which pulls tighter and tighter until
the knot fuses into a bulb and free ends of the filament break
off to form new microbes. And if the reader will check David
Jensen’s fascinating article on “The Hagfish” (Scientific
American, February 1966, pages 82-90), he will learn about
an eel-like fish that cleans itself of slime and does other curi-
ous things by tying itself into an overhand knot.

What about humans? Do they ever tie parts of their anat-
omy into knots? The reader is invited to fold his arms and
give the matter some thought.

ANSWERS

If the surface shown in Figure 11 is constructed with paper
and cut as explained, the resulting endless strip will be free
of any knot. This proves that the surface’s single edge is
similarly unknotted. The surface was designed so that its edge
corresponds to a pseudo knot known to conjurers as the
Chefalo knot. It is formed by first tying a square knot, then
looping one end twice through the knot in such a way that
when both ends are pulled, the knot vanishes.



